Increased levels of transition metals in breast cancer tissue

John G. Ionescu ¹, PhD; Jan Novotny ², MD; Vera Stejskal ³, PhD; Anette Lätsch ¹, PhD; Eleonore Blaurock-Busch ⁴, PhD & Marita Eisenmann-Klein ⁵, MD

¹ Research Department of Spezialklinik Neukirchen, Neukirchen, Germany.
² Institute of Pathophysiology and Oncology, Charles University, Prague;
³ Department of Immunology and Microbiology, First Medical Faculty, Charles University, Prague; Czech Republic.
⁴ Laboratory for Micro Trace Minerals, Hersbruck, Germany.
⁵ Caritas Hospital St. Josef, Regensburg, Germany.

Correspondence to: Professor John G. Ionescu, PhD.
Research Department of the Spezialklinik Neukirchen
Krankenhaustr. 9, 93453 Neukirchen, GERMANY
TEL: +49 9947 28143; FAX: +49 9947 28109
EMAIL: info@spezialklinik-neukirchen.de
INTERNET: www.spezialklinik-neukirchen.de

Submitted: December 14, 2005 Accepted: January 14, 2006

Key words: breast cancer; heavy metals; iron; nickel; chromium; zinc; mercury; lead; cadmium; copper

Abstract

OBJECTIVES: High levels of transition metals such as iron, nickel, chromium, copper, and lead are closely related to free radical generation, lipid peroxidation, formation of DNA strand breaks, and tumor growth in cellular systems. In order to determine the correlation to malignant growth in humans, we investigated the accumulation of heavy metals in 20 breast cancer biopsies and compared the findings to the levels found in 8 healthy biopsies.

METHODS: The concentration of transition metals in breast cancer and control biopsies was assessed by a standardized Atomic Absorption Spectrofotometry technique with acidic hydrolysis for sample preparation. Additionally, heavy metal analysis in control biopsies was also performed with an Inductive Coupled Plasma – Mass Spectroscopy technique. For statistical analysis of the results, the Mann-Whitney U Test was applied.

RESULTS: A highly significant accumulation of iron (p<0.0001), nickel (p<0.00005), chromium (p<0.00005), zinc (p<0.00001), cadmium (p<0.005), mercury (p<0.005), and lead (p< 0.05) was found in the cancer samples when compared to the control group. Copper and silver showed no significant differences to the control group, whereas tin, gold, and palladium were not detectable in any biopsies.

CONCLUSIONS: The data suggest that pathological accumulation of transition metals in breast tissue may be closely related to the malignant growth process.
Introduction

Reports in the last two decades closely relate the presence of transition metals like iron (Fe) or copper (Cu) to free radical generation via Fenton- and Haber-Weiss-reactions, ascorbate autoxidation, lipid peroxidation processes, and formation of DNA strand breaks [2, 12, 14, 19]. As published previously, lipid peroxidation-induced malondialdehyde-DNA adducts can accumulate and reach high levels in the breast tissue of women with breast cancer leading to endogenous DNA modifications [24]. Furthermore, ferric-ethylenediamine N,N'-diacetate (EDDA)- and nitrilotriacetic acid (NTA)-complexes were shown to induce free radicals and renal carcinomas in Wistar rats, demonstrating the key role of transition metals in the abnormal proliferation process [9, 16]. Since repeated mitochondrial and nuclear DNA mutations may lead to malignant growth, we investigated the heavy metal content in breast cancer biopsies and in healthy breast tissue biopsies.

Material & Methods

Heavy metal analyses were performed on 20 frozen breast cancer biopsies and 8 healthy breast tissue samples supplied by the Institute of Pathophysiology and Oncology, Charles University, Prague, Czech Republic, and the Caritas Hospital St. Josef, Regensburg, Germany.

The concentrations of Fe, cadmium (Cd), lead (Pb), chromium (Cr), tin (Sn), nickel (Ni), Cu, mercury (Hg), silver (Ag), gold (Au), palladium (Pd), and zinc (Zn) in the biopsy materials were measured in the Spezialklinik Neukirchen, Germany, by a standardized furnace-atomic absorption spectrophotometry (AAS)-technique using a Perkin Elmer Sima 6000 AA-spectrophotometer and acidic hydrolysis as pulping procedure for sample preparation [17].

Additionally, heavy metal analysis in control biopsies was done using an inductive coupled plasma-mass spectroscopy (ICP-MS) technique in the Laboratory for Micro Trace Minerals, Hersbruck, Germany. Each analysis was performed three times. The final result per sample is the mean value of three determinations expressed in µg/kg. The Mann-Whitney U Test was used for statistical analysis of the results.

Results

Data analysis showed a highly significant accumulation of Fe, Ni, Cr, Zn, Hg, Cd, and, to a lesser extent, of Pb in malignant breast tissue when compared to healthy breast tissue (Table 1).

Iron levels were dramatically increased in the breast cancer biopsies when compared to the control group (median: 53,174 µg/kg, range: 14,391–205,930 vs 10,937 µg/kg, range: 5,331–21,646) (p<0.0001).

A highly significant Ni accumulation was recorded in the patient biopsies (median: 995 µg/kg, range: 469–3,361). Control biopsies showed measurable levels (median: 21 µg/kg, range: 11–33), but at more than one order of magnitude lower (p<0.00005). Similar results were found for Cr when compared to the control group (median: 816 µg/kg, range: 313–5,978 vs 39 µg/kg, range: 19–119) (p<0.00005).

A surprisingly high accumulation of Zn was recorded in the cancer biopsies (median: 17,075 µg/kg, range: 1,326–97,895), the difference to the control group (median: 3,741 µg/kg, range: 2,548–9,339) again being highly significant (p<0.001).

Mercury was found moderately increased in 11 out of 20 cancer samples (median: 6.9 µg/kg, range: 1.8–45.9), a highly significant difference when compared to the control group (median: 2.1 µg/kg, range: 0.1–6.6) (p<0.005).

Increased Cd concentrations were found in 18 out of 20 cancer biopsies (median: 42 µg/kg, range: 9–551), the difference to the control group (median 16 µg/kg, range: 5–30) being highly significant (p<0.005).

Lead was also increased in 12 out of 20 tumor biopsies (median: 105 µg/kg, range: 9–976). The statistical difference to the control group (median: 64 µg/kg, range: 1–92) was still significant (p<0.05) (data not shown).

Surprisingly, lower Cu levels were found in 11 out of 20 patient biopsies (median: 919 µg/kg, range: 320–44,687), when compared to the control samples (median: 1,280 µg/kg, range: 261–3,049). Of the remaining nine cancer samples, seven showed increased values and two were in the normal range, documenting a different accumulation pattern possibly related to the tumor aetiology or growth stage. Taken together no significant difference was recorded between the cancer group and the controls (p=0.65) (data not shown).

Only four out of the 20 cancer samples, but none of the control biopsies, showed detectable levels of Ag (range: 34–91 µg/kg) (data not shown). Tin, Au, and Pd were not detectable in either cancer or control biopsies. When the content of heavy metals in control biopsies was analysed by two methods (AAS and ICP-MS) the values were not significantly different (data not shown).

Discussion

To our knowledge, this is the first report describing a large accumulation of Fe and other transition metals like Ni, Cr, Zn, Cd, Hg, and Pb in the breast cancer tissue. These findings may have an implication for the pathogenesis of breast cancer. The etiology of human breast cancer is still controversial, although hormonal influences, toxic compounds, oxidative stress, and lipid peroxidation have been suggested to play a role in breast cancerogenesis.
In biological systems, the concentration of redox-active transition metals capable of catalyzing and/or generating free radicals like superoxide, hydrogen peroxide, and hydroxyl radical is relatively low. However, under certain pathological conditions (haemochromatosis, Wilson disease, collagenoses, and various malignancies), transition metals and their transport proteins may accumulate in different target organs inducing cellular lipid peroxidation and DNA-attack. In this respect, the ability of excess Fe in mediating the formation of hydroxyl radicals, suppressing cellular immune functions, and promoting tumor growth is well-established [9, 12, 16, 25]. Increased Cu concentrations were also found in human lung cancer biopsies [1] and in other tumors [5].

Nickel, Cr, and Cd have been recognized as mutagens and carcinogens because of their ability to inhibit the repair of damaged DNA. In addition, they can enhance the mutagenicity and carcinogenicity of directly-acting genotoxic agents [4]. At the same time, carcinogenic effects of Ni, directly or in association with organic compounds, have been described in the literature [6, 15]. Recently, increased concentrations of Fe and Ni have been found in the malignant human prostate [26]. Inhaled particulate forms of hexavalent Cr cause lung cancer, and at cellular level, Cr exposure may lead to cell cycle arrest, apoptosis, or neoplastic transformation [20]. Occupational exposure to Cd is associated with lung cancer in humans, and high Cd concentrations have been found in proliferative prostate lesions [23].

Macromolecular compounds (dextrans) substituted with

### Table 1. Heavy metal content in breast cancer (n = 20) and healthy breast tissue (n = 8) biopsies

<table>
<thead>
<tr>
<th>Patients</th>
<th>Fe µg/kg</th>
<th>Ni µg/kg</th>
<th>Cr µg/kg</th>
<th>Zn µg/kg</th>
<th>Hg µg/kg</th>
<th>Cd µg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27,381</td>
<td>893</td>
<td>655</td>
<td>6,268</td>
<td>2.1</td>
<td>165</td>
</tr>
<tr>
<td>2</td>
<td>205,930</td>
<td>733</td>
<td>410</td>
<td>6,420</td>
<td>4.1</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>14,664</td>
<td>530</td>
<td>316</td>
<td>6,022</td>
<td>1.8</td>
<td>168</td>
</tr>
<tr>
<td>4</td>
<td>29,813</td>
<td>760</td>
<td>513</td>
<td>9,594</td>
<td>8.2</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>48,573</td>
<td>1,001</td>
<td>366</td>
<td>13,068</td>
<td>6.1</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>32,347</td>
<td>921</td>
<td>701</td>
<td>8,965</td>
<td>33.4</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>47,796</td>
<td>949</td>
<td>855</td>
<td>5,929</td>
<td>7.8</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>29,385</td>
<td>1,230</td>
<td>838</td>
<td>8,197</td>
<td>7.3</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>37,154</td>
<td>469</td>
<td>313</td>
<td>32,642</td>
<td>9.1</td>
<td>142</td>
</tr>
<tr>
<td>10</td>
<td>142,391</td>
<td>1,285</td>
<td>968</td>
<td>56,838</td>
<td>4.9</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>80,164</td>
<td>1,152</td>
<td>4,415</td>
<td>22,888</td>
<td>11.9</td>
<td>124</td>
</tr>
<tr>
<td>12</td>
<td>58,453</td>
<td>1,433</td>
<td>1,786</td>
<td>97,895</td>
<td>12.5</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>106,350</td>
<td>3,361</td>
<td>5,978</td>
<td>32,917</td>
<td>2.2</td>
<td>551</td>
</tr>
<tr>
<td>14</td>
<td>28,723</td>
<td>490</td>
<td>458</td>
<td>1,326</td>
<td>5.2</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>65,112</td>
<td>988</td>
<td>793</td>
<td>50,516</td>
<td>9.0</td>
<td>96</td>
</tr>
<tr>
<td>16</td>
<td>84,816</td>
<td>1,057</td>
<td>906</td>
<td>21,082</td>
<td>7.6</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>76,608</td>
<td>1,277</td>
<td>1,362</td>
<td>53,336</td>
<td>45.9</td>
<td>42</td>
</tr>
<tr>
<td>18</td>
<td>72,376</td>
<td>1,528</td>
<td>1,389</td>
<td>53,709</td>
<td>6.5</td>
<td>42</td>
</tr>
<tr>
<td>19</td>
<td>42,254</td>
<td>624</td>
<td>708</td>
<td>8,935</td>
<td>2.8</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>57,774</td>
<td>1,142</td>
<td>1,562</td>
<td>27,319</td>
<td>4.1</td>
<td>29</td>
</tr>
<tr>
<td><strong>Median</strong></td>
<td>53,174</td>
<td>995</td>
<td>816</td>
<td>17,075</td>
<td>6.9</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controls</th>
<th>Fe µg/kg</th>
<th>Ni µg/kg</th>
<th>Cr µg/kg</th>
<th>Zn µg/kg</th>
<th>Hg µg/kg</th>
<th>Cd µg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,331</td>
<td>32</td>
<td>29</td>
<td>2,548</td>
<td>2.5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>11,448</td>
<td>11</td>
<td>19</td>
<td>3,509</td>
<td>6.6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>21,646</td>
<td>19</td>
<td>36</td>
<td>3,973</td>
<td>2.3</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>11,424</td>
<td>32</td>
<td>119</td>
<td>2,940</td>
<td>1.9</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10,138</td>
<td>33</td>
<td>70</td>
<td>4,032</td>
<td>2.5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>10,450</td>
<td>23</td>
<td>54</td>
<td>5,600</td>
<td>0.2</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>17,200</td>
<td>12</td>
<td>41</td>
<td>9,339</td>
<td>0.1</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>8,261</td>
<td>15</td>
<td>25</td>
<td>2,607</td>
<td>0.1</td>
<td>30</td>
</tr>
<tr>
<td><strong>Median</strong></td>
<td>10,937</td>
<td>21</td>
<td>39</td>
<td>3,741</td>
<td>2.1</td>
<td>16</td>
</tr>
</tbody>
</table>

**Significance**  
p<0.0001  p<0.0005  p<0.0005  p<0.001  p<0.005  p<0.005

All results represent the mean of three determinations.
Hg-containing side chains were reported to promote fibrosarcoma growth in mice [18].

Interestingly, Zn as an essential element was shown to mediate and increase tumor growth, and Zn deple
tion was shown to suppress tumor growth in mice and rats [11, 13, 22].

None of our patients were occupationally exposed to metals. However, all were exposed to metals through
dental restorations such as amalgam, gold bridges or metallic retainers. Another source of metal exposure is
cigarette smoke. About half of our patients were smokers and virtually all have been exposed passively to cigarette
smoke.

The higher heavy metal concentrations encountered in various tumor cells may be used for therapeutic inter
ventions with metal chelators, ascorbic acid or phenolic compounds as already reported [3, 7, 8, 10]. Reduction
and mobilization of transition metals from their storage or transport proteins renders them extremely reactive in
catalyzing free radical reactions according to the equa
tions:

\[
\begin{align*}
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^- \\
\text{H}_2\text{O}_2 + \text{O}_2^- & \rightarrow \text{Fe}^{3+} + \text{Cu}^{2+} + \text{OH} + \text{OH}^- + \text{O}_2
\end{align*}
\]

These Fenton- and Haber-Weiss-reactions are strong generators of hydroxyl radicals leading to lipid
peroxidation, DNA strand breaks, and apoptosis [3, 12, 16]. Bioactivation of phenolic/quinonic compounds at
the tumor site may lead to a significant generation of superoxide and semiquinone radicals with deleterious
action for the metal-rich malignant cells [7, 8]. Preventive diagnostic procedures should include, besides cur
rent tumor markers, 2/16-OH-estrogen ratio and Phase II detoxification assessment. Since inflammation often
precedes the development of cancerogenic lesions, the MELISA® Test [21] might be useful for the determination
of metal-induced inflammation in an individual patient.

In conclusion, the presence of transition metals in breast cancer tissue might be closely related to the mali
gnant growth process.

Acknowledgement

This work was supported by VZ MSM 0021 620812.

REFERENCES

concentrations in lung tissue of subjects suffering from lung can
2. Aust SD, Morehouse LA, Thomas CE. Role of metals in oxygen rad
er D. Ascorbic-acid-mediated iron release from cellular ferritin and
its relation to the formation of DNA strand breaks in neurob
4. Beyersmann D. Effects of carcinogenic metals on gene expres
5. Ebadi M, Swanson S. The status of zinc, copper and metallothio
6. Hartwing A. Recent advances in metal carcinogenicity. Pure Appl
7. Ionescu JG. New evidence-based therapies for cancer. Proceed
ings of the 17th Int. Symposium on Integrative Medicine, p.1–21,
Tenerife, Spain, June 2005.
8. Ionescu JG. Transition metals and cancer. Presented at the 12th
MELISA Study Group Conference, Prague, 10th–11th September
2005.
ney of Wistar rats by ferric ethylenediamine-N,N'-dicarboxylic acid.
al. Ascorbic acid induces lipid peroxidation on neuroectodermal
SK-N-LO cells with high endogenous ferritin content and loaded
with Mab-ferritin immunocojugates. Anticancer Res 1994;
11. McQuitty JT Jr, DeWys WD, Monaco L, Strain WH, Tob CG, Apgar J,
et al. Inhibition of tumor growth by dietary zinc deficiency. Can
12. Mello FA, Meneghini R. In vivo formation of single-strand breaks in
DNA by hydrogen peroxide is mediated by the Haber-Weiss-
13. Mills BJ, Broghamer WL, Higgins PJ, Lindeman RD. Inhibition of
746–752.
14. Minotti G, Aust SD. The requirements for iron (III) in the initiation
of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol
growth, metastasis and histology of concurrent administration
of putrescine and its metabolising inhibitor alpha-difluorometh
ylorinithine in nickel tumorigenesis in soft tissue. Carcinogenesis
active oxygen species and free radicals. Pathol Int 1996; 46:
311–332.
Atomic absorption spectrophotometry (AAS) for the evaluation
of metallosis in prostheses and artificial organs: a new approach.
18. Pitha J, Kociolek K, Apfelf CA. Opposite effects of dextrins substi
uted with sulphhydrils or mercury on tumor growth. Cancer Res
19. Scarpa M, Stevanato R, Viglino P, Rigo A. Superoxide ion as active
mediator in the autoxidation of ascorbate by molecular oxygen.
genotoxicity and apoptosis: relationship to chromium carcino
et al. Inhibition of tumor growth by dietary zinc deficiency. Cancer Res
23. Waalkes MP, Coogan TP, Carter RA. Toxicological principles of
metal carcinogenesis with special emphasis on cadmium. Crit
24. Wang M, Dhingra K, Hittelman WN, Liehr JG, de Andrade M, Li
D. Lipid peroxidation-induced putative malondialdehyde-DNA ad
ducts in human breast tissue. Cancer Epidemiol Biomarkers Prev
5: 19–36.
26. Yaman M, Atici D, Bakirdere S, Akdeniz I. Comparison of trace
metal concentrations in malignant and benign human prostate. J